
ObsSlice: A Timed Automata Slicer based on
Observers

Vı́ctor Braberman1 ?, Diego Garbervetsky1, and Alfredo Olivero2??

1 Computer Science Department, FCEyN, Universidad de Buenos Aires, Argentina
{vbraber|diegog}@dc.uba.ar

2 Department of Information Technology, FIyCE, Universidad Argentina de la
Empresa, Argentina aolivero@uade.edu.ar

Abstract. ObsSlice is an optimization tool suited for the verification
of networks of timed automata using virtual observers. It discovers the
set of modelling elements that can be safely ignored at each location of
the observer by synthesizing behavioral dependence information among
components. ObsSlice is fed with a network of timed automata and gen-
erates a transformed network which is equivalent to the original one up
to branching-time observation. Experiments suggest that the approach
may lead to significant time and space savings during verification phase
as well as reductions in the length of counterexamples.

1 Introduction

In formal models of concurrent systems, safety and liveness requirements are
commonly expressed in terms of virtual components (observers) which are com-
posed in parallel with the set of components that constitutes the system under
analysis (SUA). Our tool ObsSlice, based on [1], is fed with a SUA and an
observer specified as a network of Timed Automata (TAs) and statically dis-
covers, for each observer location, a set of modelling elements (automata and
clocks) that can be safely ignored without compromising the validity of TCTL
formulas stated over the observer (i.e., an exact reduction method wrt. branch-
ing time analysis). Eliminating irrelevant activity seems to mitigate state space
explosion and have a positive impact on the performance of verification tools in
terms of time, size and length of counterexamples. ObsSlice seems to be well
suited for treatment of models comprising several concurrent timed activities
over observers that check for the presence of event scenarios (e.g, [2]).

2 ObsSlice Architecture

Figure 1 shows a modular view illustrating the way ObsSlice solves the stated
slicing problem by combining concepts presented in [1] . Currently, the tool takes
? Research supported by UBACyT grant X156, ANCyT grant PICT 11738, Microsoft

Research Embedded Innovation Award
?? Research supported by UADE grant ING6-01



a network of TAs compatible with Kronos [3] and OpenKronos [4] formats
and an I/O classification of labels that appear in each TA.The main goal of the

Fig. 1. ObsSlice architecture

Relevance Calculator module is to estimate, for each observer location, a set of
components and clocks whose activity can be safely ignored during the observed
evolution of the SUA. To achieve that goal, it relies on Pair Wise Influence
Calculator which statically calculates if a given component A may influence
the behavior of another component B when sojourning a given observer loca-
tion. Currently, I/O specification (uncontrollable/controllable classification of
events for each automata as stated in [5]) helps to check potential influence due
to communication, assignments or predicates. I/O declarations are, in general,
intuitively known by modelers or can be automatically provided by high-level
front-end modelling languages 3.

On the other hand, Sojourn Set Calculator provides an over approxima-
tion of the set of locations that may be traversed by a given component when
sojourning a given observer location. This information serves as a way to ob-
tain a more precise pair-wise influence prediction. Sojourn Set Calculator,
by default, performs an untimed composition of each of the SUA TAs with the
observer. Optionally, the sojourn set calculus can be improved by specifying
which sets of TAs should be composed together due to a suspected synchronous
behavior among them (synchronous subsystem directives).

Finally, the Automata Translator receives the activity tables and generates
the network of transformed TAs. The enabling and disabling of modelling el-
ements is achieved differently depending on the target dialect. Currently, the
transformed models can be checked by Kronos [3], OpenKronos [4] and Up-
paal [6]. For Kronos and OpenKronos models, the reduction is done by
adding sleep locations and the corresponding transitions (when possible, deacti-
vation of clocks is also informed together with the model). For Uppaal, a similar

3 ObsSlice is robust in the sense that a wrongly specified I/O label classification
would only compromise the exactness of the method but reachability results would
still be conservative.



approach is taken except that broadcasting is replaced by committed chains of
disabling and enabling transitions.

3 Experiments

Being a preprocessing tool based on an exact reduction technique, ObsSlice
is suited for integration with virtually any verification strategy built in current
modelcheking tools 4. Experiments reported are not meant to be benchmarks
of modelchecking engines but rather they aim at showing the improvements
achieved by “ObsSlicing” models for different tools and features. OpenKronos
tool was run with the option profounder enabling a DFS strategy (DBMs as
data structure). This option was run for the cases when the error state is indeed
reachable. On the other hand, Uppaal was run using the -Was option and BFS
traversal (in order to generate the whole state space when error is not reachable),
-Was -t1 to generate the shortest trace to the error (Minimal Constraint system
as data structure), and -Was -A to apply a conservative abstraction (convex hull)
for some unreachable cases. Table 1 shows the examples sizes: number of TAs of
the SUA, clocks (SUA+observer) and observer details (locations and transitions).
Table 2 shows times and memory consumed by the modelchecking tools over the
original and obsSliced models. We also provide the size of the shortest trace 5

and the time consumed to generate it. Time consumed by ObsSlice itself is
not reported since it is negligible compared with verification times (less than a
couple of seconds).

Fddi10 is an extension of the FDDI tokenModel #TAs #Clocks Observer
#Loc #Tran

Fddi10 21 32 21 221
Pipe6 13 14 15 197
Pipe7 15 16 17 227
RemoteBR 12 13 29 395
MinePump 8 8 9 58

Table 1. Examples sizes

ring protocol similar to the one presented
in [1] where the observer monitors the time
the token takes to return to a given station.
Pipe6 and Pipe7 are pipe-lines of sporadic
processes that forward a signal emitted by
a quasi periodic source [1] (6 and 7 stages

resp.). The observer captures a scenario violating an end-to-end constraint for
signal propagation. The rest of examples are designs of distributed real-time
system generated using the technique presented in [7]. Observers were obtained
using VTS [2], a tool that automatically produces timed observer from scenario
specifications. RemoteBR is a design [2] composed of a central component and two
remote sensors. When the central component needs sampled data, it broadcasts
a request to the sensors. Each sensor handles requests by reading the last stored
value by the sampler and sending it back to the central component. There, the
readings are paired for further processing. The observer captures scenarios where
a request for collecting a pair of data items is not fully answered in less than a
given amount of time. Minepump is a design of a fault-detection mechanism for
a distributed mine-drainage controller [8]. A watchdog task periodically checks
the availability of a water level sensor device by sending a request and extracting
acks that were received and queued during the previous cycle by another sporadic
task. When the watchdog finds the queue empty, it registers a fault condition in
4 for a discussion on related work, please refer to [1]
5 including committed synchronization with the observer



a shared memory which is periodically read, and forwarded to a remote console,
by a proxy task. The observer checks if the failure of high-low water sensor is
always informed to the remote operator before a given deadline.

OpenKronos Uppaal property satisfied Uppaal prop. not satisfied
Model Original ObsSliced Original ObsSliced Original ObsSliced

Time Time Time Depth Time Depth Time Mem Time Mem
Fddi10 630.08s 1.21s 835.95s 32 0.65s 32 O/M O/M 0.44s 5.09
c.h. (-A) 1141.24s 230.28 0.15s 5.02
Pipe6 994.20s 0.05s 306.76s 103 31.59s 56 21.11s 16.06 6.77s 9.59
Pipe7 O/M 0.03s O/M O/M 324.44s 65 407.36s 162.79 84.02s 49.87
RemoteBR O/M 1.10s O/M O/M 1.69s 101 O/M O/M 1.75s 6.23
c.h. (-A) 29.72s 19.68 0.93s 8.60
MinePump O/M 0.86s 368.75s 81 10.82s 54 2856.47s 139.43 65.66s 20.02

Table 2. Verification benchmarks (Mem expressed in MB, Time in seconds)

Experiments were run on a SunBlade 2000 with 2GB RAM. Please notice the
important savings in verification times (even using convex hull when the whole
state space cannot fit in memory 6), memory consumed and size of counterex-
amples.

A Java version of our tool together with a set of examples can be found at
http://www.dc.uba.ar/people/proyinv/rtar/obsslice.

4 Future Work

Future extensions comprise end-to-end support of more timed automata dialects.
We also plan to extend the concept of influence at a finer grain of analysis (not
only at the location basis) and to use time information to make a more precise
analysis of sojourn sets. On the other hand, we believe that our abstraction
based on activity, can be cheaply performed on-the-fly by adapting verification
engines therefore avoiding the use of chains of committed locations that produce
an unnecessary state-space traversal.

References

1. V. Braberman, D. Garbervetsky, and A. Olivero. Improving the verification of timed
systems using influence information. In TACAS-02, LNCS 2280, pages 21–36, 2002.

2. A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual timed event scenarios.
In Accepted for publication ICSE 2004, 2004.

3. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The Tool KRONOS. In Proceedings
of Hybrid Systems III, volume 1066 of LNCS, pages 208–219. Springer-Verlag, 1996.

4. S. Tripakis. L’Analyse Formelle des Systemès Temporisés en Practique. Ph d. thesis,
Univesité Joseph Fourier, 1998.

5. V. Braberman and A. Olivero. Extending timed automata for compositional mod-
eling healthy systems. In Proc. of MTCS-01, ENTCS 52, 2001.

6. G. Behrmann, A. David, K.G. Larsen, O. Mller, P. Pettersson, and W. Yi. Uppaal
- present and future. In IEEE CDC-01. IEEE Computer Society Press, 2001.

7. V. Braberman and M. Felder. Verification of real-time designs: Combining schedul-
ing theory with automatic formal verification. In ESEC/FSE-99, LNCS 1687, 1999.

8. V. Braberman. Modeling and Checking Real-Time Systems Designs. PhD thesis,
FCEyN, Universidad de Buenos Aires, 2000.

6 Moreover, for Minepump, -A option is useless since it yields a MAYBE result.


